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A B S T R A C T   

High-entropy ceramic coatings have some unique physical and mechanical properties, such as high hardness, 
good corrosion resistance and excellent thermal stability. However, since they can contain five or more metal 
elements, their composition is quite complex. Combined with machine learning and high-throughput experi
mental methods, ultra-hard high-entropy ceramic coatings were screened in a short period of time. The hardness 
of coatings is predicted using a random forest algorithm based on its composition and processing parameters. The 
uncertainty of machine learning prediction is further reduced by active learning. After three iterations, a new 
high-entropy ceramic coating (AlCrNbTaTi)N with a hardness of 40.1 GPa has been successfully prepared, which 
is 9% higher than the optimal hardness of the original quinary system. This paper demonstrates that machine 
learning combined with high-throughput experimental methods can effectively accelerate design and composi
tion optimization of multicomponent materials.   

1. Introduction 

Due to the high hardness, excellent oxidation and wear resistance, 
transition metal nitrides (TMNs) coatings are widely used with struc
tural or functional materials to protect them from wear damage [1-4]. 
Among TMNs, TiN and CrN are common protective coatings due to their 
exceptional mechanical properties [5,6]. However, the rapid oxidation 
of TiN at 550 ◦C limits its industrial applications. The addition of Al into 
either TiN or CrN increases the oxidation resistance up to 950 ◦C [7]. 
Thus, alloying is an effective method to improve the properties of 
coatings. However, most studies are limited to ternary or quaternary 
systems (without nitrogen compounds). 

Recently, numerous high-entropy alloy nitride (HEAN) coatings have 
been investigated [8-10]. Due to high-entropy and slow diffusion effects, 
HEAN coatings easily form a single-phase structure, which has been 
found to exhibit several unique properties, such as good thermal sta
bility, excellent mechanical properties and corrosion resistance [11-14]. 
Thus, HEAN is a potential candidate material for the next generation of 

protective hard coatings [15]. HEAN coatings are generally made up of 
five or more metal elements, and the number of possible components is 
much higher than in traditional coatings. Due to the complexity of HEAN 
coatings, traditional “trial and error” experiments are expensive and 
time-consuming. 

In recent years, machine learning (ML) has been applied in the field 
of material science, providing solutions to complex problems [16,17]. 
With the assistance of appropriate descriptors, ML has been successfully 
applied for the design of new materials, such as bulk metallic glasses 
[18], light-emitting diodes [19], shape memory alloys [20] and 
inorganic-organic hybrid materials [21]. Moreover, by establishing the 
relationship between material composition and performance, ML can 
realize the efficient and reasonable design of material composition. 
Wang et al. established a machine learning design system for predicting 
ultimate tensile strength and conductivity based on copper alloy 
composition and realized its reverse design [22]. In the field of 
high-entropy materials, Wen et al. developed a material design strategy 
for finding high-entropy alloys with high hardness in the 
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Al–Co–Cr–Cu–Fe–Ni system [23]. Kaufmann et al. used thermodynamic 
and compositional attributes to predict the entropy-forming ability 
(EFA) of disordered metal carbides [24]. These examples prove that 
machine learning is a useful tool for the discovery of multicomponent 
materials. However, most of these studies focus on bulk materials, with 
only a few studies of coatings. Banko et al. used generative machine 
learning methods to predict SEM surface images of thin films, which can 
be applied for the optimization of chemical composition and processing 
parameters to achieve a desired microstructure [25]. In addition to 
machine learning, using active learning to select the next experiment 
can accelerate the discovery of new materials with excellent perfor
mance, such as the discovery of high-strength magnesium alloys and the 
search for shape memory alloys with low transition temperature [26, 
27]. Furthermore, high-throughput methods are also frequently used in 
the preparation of coatings to speed up the discovery of new materials 
[28]. Song et al. presented a high-throughput strategy where 97 inde
pendent nanocrystalline alloy samples with homogeneous element dis
tribution can be prepared simultaneously through multi-station rotary 
sample stage [29]. 

In this study, a material design strategy combining machine learning 
and high-throughput experiments is proposed to rapidly screen ultra- 
hard high-entropy ceramic coatings. The composition and process pa
rameters of the coating are used to predict the hardness. The coating 
hardness predicted by this method is 9% higher than in the quinary 
system from the original training dataset. These coatings were success
fully synthesized through high-throughput experiments. Machine 
learning combined with high-throughput experimental methods can 
effectively accelerate the composition design of multi-component 
materials. 

2. Materials and methods 

2.1. Design strategy 

The whole material design strategy schematics based on machine 
learning is shown in Fig. 1. The data collection and processing steps are 
the basis of machine learning, and the input variables are composed of 
the coating composition and the preparation process. Then the variables 
are sorted and analyzed to determine the relationship between the input 
variables and the impact on output variables. The prediction accuracy of 

different models is compared through 10-fold cross-validation, and the 
RF model is finally selected. Because of the uncertainty of ML prediction, 
the EGO algorithm is used to identify the super-hard coatings from the 
search space. Finally, coatings were prepared by high-throughput ex
periments, and newly obtained experimental data were added to the 
training data for the next iteration. 

2.2. Machine learning models 

Six types of common machine learning models were applied, 
including linear regression (Lin), linear kernel support vector regression 
(SVR.l), polynomial kernel support vector regression (SVR.p), radial 
kernel support vector regression (SVR.r), random forest (RF) and 
gradient boosting regression (GBR) models. All ML models were estab
lished and trained by the scikit-learn library in the Python environment. 
The original data was divided into a training set and a testing set, and the 
training set is taken from 50% to 90% of the original dataset. 

Pearson correlation coefficient, p, was used to evaluate the correla
tion of features: 

p=
∑n

i=1(xi − x)(yi − y)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(xi − x)2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(yi − y)2
√√ (1)  

here, xi and yi are features for comparison. The p value varies from 0 to 
1. The higher the value of p, the greater the correlation between the two 
features. 

In addition, determinant coefficients (R2) and root mean square error 
(RMSE) were used to evaluate the predictive performance of the model 
through 10-fold cross-validation [30]: 

R2 = 1 −

∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (2)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1
(yi − ŷi)

2

√

(3)  

here, yi, ̂yi and yi represent the measured value, the predicted value, and 
the average value of the hardness, respectively. 

Fig. 1. Schematic design of a high-entropy ceramic coating with high hardness. (a) Data collection (b) The input features are sorted by random forest. (c) Modeling 
insert space Feature importance exploration and applications. (d) Use active learning to balance development and exploration. (e) Experimental verification and 
iterative methods are used to predict and prepare new coatings. 
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2.3. Search space 

The composition space of the HEAN coatings corresponds to a large 
search space, since it is composed of different systems. As shown in 
Fig. 2, the elements forming the nitride coating can be divided into 
strong and weak nitride-forming elements. Strong nitride-forming ele
ments are composed of IV to VI groups of metals, including aluminum 
and silicon. Weak nitride-forming elements such as manganese and 
nickel will degrade the mechanical properties of the coating. A total of 
252 high-entropy ceramic systems can be formed by selecting 5 metals 
from 10 strong nitriding-forming elements. Considering the preparation 
of the coating, the small accuracy is not appropriate, so the step size of 
composition change is 1%. The variation range of each element 
composition is from the minimum value in the dataset to 35%, and the 
sum of all elements is 100%. 

2.4. Active learning 

As mentioned in the above section, the search space of high-entropy 
ceramic coatings is very large, and the training data only accounts for a 
small part of it. There is a great uncertainty in relying only on the ML 
model to find the best coating system. Therefore, a utility function is 
introduced to calculate the maximum expected improvement (EI) of the 
target attribute to select the next experiment [31-33]. The EI can bal
ance exploration (to improve prediction models) and application (to find 
the best forecast). The utility function is defined as EI(μ, σ) =
[φ(z)+zΦ(z)], where μandσare the average and standard deviation of the 
predicted hardness of the new material selected using the current 
alternative model, and z = (μ − μ*)/σ, where μ* is the maximum 
hardness in the current training data. In order to estimate the uncer
tainty of prediction, bootstrap sampling is performed. First, the training 
set is generated by bootstrap sampling, on which the RF model is 
trained, and then the hardness of each coating is predicted in the search 

space. This step is repeat 1,000 times to search 1,000 hardness values for 
each coating. Thereafter, the average predicted value and standard de
viation of target performance corresponding to each coating component 
are namedμandσ. Materials with the highest EI were selected for 
preparation. 

2.5. Experimental procedure 

The coatings were deposited on Si (100) substrates (10 mm × 10 mm 
× 0.4 mm) using the JCP 500 magnetron sputtering system equipped 
with three targets. The schematic diagram of magnetron sputtering 
system is shown in Fig. 3. Magnetron co-sputtering is a common method 
in high-throughput preparation. By adjusting the height and the angle of 
the targets, a large number of thin film samples can be prepared in one 
sputtering process. AlTi, CrNb, and Ta targets were used for high- 
throughput coatings preparation, and 16 samples with gradient 
composition distribution could be prepared at one time. The power of 
AlTi, CrNb and Ta targets are 80W, 100W and 80W, respectively. The 
base pressure was 1.8 × 10− 3 Pa and then substrates were cleaned by Ar 
+ ions etching for 10 min. The reactive gas flow was 20 sccm Ar and 8 
sccm N2, and the deposition pressure was kept at 0.2 Pa. All depositions 
were implemented at a substrate temperature of 400 ◦C and a bias 
voltage of − 100 V for 3 h. The in-situ nanomechanical testing system 
G200 of Keysight technologies company of China was used to measure 
the hardness under a 5 mN load. Each coating sample was measured 
three times to calculate the average hardness value. The phase structure 
of the coating was determined by grazing incidence X-ray diffraction 
(GIXRD, Bruker D8 Advance, Germany). The microstructure and 
element distribution of the coating were analyzed by scanning electron 
microscope (SEM, ZeissEVO-18, ZEISS, Germany) equipped with an 
energy dispersive spectrometer (EDS). The composition of each coating 
sample is measured at different locations to ensure uniformity of the 
sample. 

3. Results and discussion 

3.1. Data collection 

Data were collected from the literature on high-entropy nitride 
coatings published since 2004. The hardness data of 22 high-entropy 
nitride systems were collected, including the chemical composition of 
the coating and three typical process conditions (substrate temperature, 
sputtering power and bias). In order to reduce the effects of processing 
on the final performance, the training data from the literature were from 
the coatings with good surface morphology prepared by magnetron 
sputtering on Si (100) substrates. The training data contained 167 
samples, including 123 quinary coatings and 44 six-component coatings 
(the number of elements did not include nitrogen compounds). The 
distribution of each element in the data set is shown in Fig. 4(a). The 
data conform to the normal distribution, in which the content of N varies 

Fig. 2. Elemental components of high-entropy nitride coatings, including strong nitride formers, weak nitride formers, and p-elements that form a covalent bond 
with N. 

Fig. 3. Schematic diagram of magnetron co-sputtering process.  
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Fig. 4. Frequency distribution histogram of (a) element composition and hardness in the data set. (b) Influence of temperature and bias on hardness.  
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from 11.8% to 65.3%, and the content of metal elements varies from 2% 
to 30%. The amount of the first ten strong nitride-forming elements such 
as Al and Cr is large, ranging from dozens to more than 100. However, 
for Y, Mn, and Ni, the data amount is in single digits. The distribution 
range of hardness is from 8.6 to 41.1 GPa. Fig. 4(b) shows the correlation 
between hardness and processing parameters. Different colors and sizes 
represent different values of hardness. As seen in the figure, the coatings 
deposited at 300–400 ◦C and 100 V bias voltage usually have high 
hardness, which also guides the processing conditions for subsequent 
experiments. Table 1 lists all the literature data collected in the 
database. 

3.2. Feature importance ranking 

The Pearson correlation map is shown Fig. 5, along with the relative 
importance of the analyzed features. Te, Po, and Bia are abbreviations of 
temperature, power, and bias voltage, respectively. In Fig. 5(a), each 
block in the matrix represents the correlation between two different 
input variables, and no features with strong correlation were identified 
(i.e., Pearson correlation coefficient ≥0.9) [34]. The correlation coeffi
cient between Mn and Ni is 0.7, which is the highest correlation. The 
reason for this phenomenon is that in the HEAN coatings system formed 
by non-nitride elements, Mn and Ni usually appear in pairs [35]. This is 
also captured by the correlation analysis. Fig. 5(b) displays the corre
lation between input characteristics and hardness using the RF method. 

The Bia is the most important variable, followed by the variable Al,Cr,N. 
However, whether the input variables have a negative or positive impact 
on relative importance cannot be determined. This effect is subsequently 
explained by shapely additive interpretation (SHAP), as shown in Fig. 6. 
Nitrogen content is an important factor affecting the hardness of the 
coating. When the nitrogen content is too low, the coating is amorphous, 
resulting in low hardness below 20 GPa. When the nitrogen content is 
sufficient, the coating can form a single solid solution structure, and the 
hardness of the coating can reach more than 30 GPa [36]. Adding Al, Cr, 
and Ta, which are strong nitride forming elements, to the coating can 
improve the hardness. In the process parameters, temperature and bias 
voltage have a great influence on the hardness, but the power has little 
effect. The increase of substrate temperature improves the adsorption 
capacity and surface mobility of atoms. Therefore, grains grow easily, 
and the lattice constant shows a downward trend, which eventually 
leads to the change of coating hardness [37,38]. With the increase of 
bias voltage, the energy of ions bombarding the target increases, which 
is conducive to the diffusion of target atoms and the ability to participate 
in chemical reactions. The density and film-forming properties of the 
coating are also improved, and finally, the hardness is improved [39, 
40]. 

Most machine learning models are black boxes, which makes it 
necessary to explain this black box model for the development of new 
material design principles. Therefore, SHAP was used to explain the 
model [41]. SHAP can identify whether the contribution of input vari
ables to each prediction is positive or negative. Fig. 6 displays the SHAP 
summary plot, in which each point is a sample. The change from red to 
blue represents the value of SHAP from high to low [42]. A positive 
value indicates that the variable is beneficial to the output, and a 
negative value indicates that the variable is harmful to the output. As 
seen in Fig. 6, Bia, N, and Ni are the three most important input variables 
affecting hardness. The effect of Bia and N on coating hardness has been 
discussed above. With the increase of Ni content, the SHAP value and 
hardness decreased. Ni is a weak nitride-forming element, which tends 
to form an alternative solid solution during coating deposition, and the 
solid solution strengthening effect is not as good as MeNx. Therefore, 
coatings composed of weak nitride-forming elements usually have poor 
mechanical properties [35]. The high values of Al , Ta and the low values 
of Cr have a positive impact on the ML model, thus guiding the addition 
amount of metal elements. The addition of Y and Si will also reduce the 
hardness of the coating. 

SHAP determined that N is the second important variable, while the 
importance ranking of RF considers Al as the second important variable. 
This is due to the fundamental differences in the way input variables are 
evaluated. Nevertheless, the first six variables determined by the RF 
algorithm and SHAP are the same. 

Table 1 
List of coatings and research papers from which the experimental data were 
mined.  

System Year System Year 

(AlCrTaTiZr)N [49] 2006 (AlCrMoNiTi)N [50] 2013 
(AlCrSiTiV)N [5] 2007 (AlCrMoZrTi)N [50] 2013 
(AlCrTaTiZr)N [51] 2007 (AlCrMnMoNiZr)N [35] 2013 
(AlCrMoSiTi)N [52] 2008 (AlCrMnMoNiZr)N [53] 2013 
(AlCrTaTiZr)N [54] 2008 (TiVCrZrHf)N [55] 2014 
(AlCrNbSiTiV)N [56] 2009 (AlCrTaTiZrSi)N [57] 2014 
(TiVCrZrY)N [58] 2010 (CrTaTiVZr)N [59] 2015 
(AlCrTaTiZr)N [60] 2010 (CrTaTiVZr)N [61] 2015 
(AlCrMoTaTiZr)N [2] 2011 (AlCrNbSiTiV)N [62] 2018 
(AlCrTaTiZrSi)N [63] 2011 (AlCrTiZrNb)N [64] 2018 
(TiVCrZrHf)N [65] 2011 (AlCrNbSiTiV)N [62] 2018 
(AlCrNbSiTi)N [66] 2012 (CrTaTiVZr)N [67] 2020 
(AlCrSiTiZr)N [68] 2012 (AlCrNbSiV)N [69] 2020 
(TiVCrZrHf)N [47] 2012 (AlCrSiNbZr)N [70] 2020 
(AlCrNbSiTi)N [71] 2013 (AlCrTiZrHf)N [72] 2020 
(AlCrMoTaTi)N [8] 2013 (AlCrTiZrV)N [73] 2020 
(TiVCrZrHf)N [74] 2013 (AlCrTiZrMoSi)N [9] 2021 
(TiVCrZrY)N [75] 2013    

Fig. 5. The importance and correlation diagram of features. (a) Pearson correlation map of features and (b) Importance ranking of features.  
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3.3. Comparison of machine learning models 

The errors of machine learning models with different test set parti
tioning ratios are shown in Fig. 7(a). As the proportion of training set 
increases, the error of the model decreases. Finally, 80% of the training 
sets were selected. Fig. 7(b) shows the RMSE results of all models, in 
which the test set errors of SVR.r, RF and GBR models are significantly 
lower than those of the other three models. The test set error of RF and 
GBR model is almost the same, but the error of GBR training set is 
obviously lower than RF.There may be an overfitting phenomenon in 
GBR. RF is an integrated regression model composed of multiple deci
sion trees. The RF model will randomly sample the original data set to 
form n different sample data sets, then build n different decision tree 
models according to these data sets, and finally, obtain the final results 
according to the average value (for regression model) or voting (for 
classification model) of these decision tree models. The advantage is that 
the prediction results will be more accurate. SVR can effectively deal 
with nonlinear problems by mapping input samples from low- 
dimensional space to high-dimensional space through kernel function, 
which is suitable for small-scale and high-dimensional data sets. The 
types of kernel functions that can be used in the SVR model include 

linear kernel function, polynomial kernel function, radial basis function 
(RBF) kernel function, and S-shaped kernel function. Among them, the 
RBF kernel is recommended and most commonly used. In this paper, the 
prediction results of SVR.r and RF were further compared, and the RF 
model is selected for subsequent prediction. 

The hardness prediction of the RF model is depicted in Fig. 7(c). The 
data points are distributed around the diagonal, which indicates that the 
ML model has good performance [43]. The predicted RMSE and R2 

values are 2.3 GPa and 0.92, respectively. The relative percentage error 
of the predicted value is calculated. It is found that the ML model has a 
high accuracy, in which more than 82% of the coating hardness error is 
less than ±15%, and more than 74% of the coating hardness error is less 
than ±10%. In general, the RF model shows good statistical and pre
dictive ability, so the RF model is adopted in this study. 

3.4. Experiments and iterations 

An iterative process was used to validate the potential of machine 

Fig. 6. Global interpretation using SHAP.  

Fig. 7. Evaluation and selection of models. (a) Error of machine learning model with different partition scale of test set. (b) Train error and test error of different 
machine learning models. (c) Fitting results of random forest model. 

Table 2 
Composition and properties of three new coatings.  

Coatings No. Elemental content, at.% Hardness, GPa 

N AI Cr Nb Ta Ti predicted experimental 

1 49 15 12 2 19 4 33.8 37.9 
2 50 16 4 1 25 4 34.9 38.5 
3 48 16 15 4 8 9 35.7 40.1  

Fig. 8. Comparison of mechanical properties of high-entropy ceramic coatings.  
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learning in discovering high-performance HEAN coatings. The hardness 
of 252 systems was predicted in the search space, and the new system 
with the highest hardness (AlCrNbTaTi)N was selected for subsequent 
synthesis. Considering that the composition of the sample prepared by 
magnetron sputtering is difficult to control, the coating is sputtered by 
the high-throughput preparation method [39]. By adjusting the sput
tering power of the target gun, 16(AlCrNbTaTi)N coating samples can be 
prepared in one run. Coating hardness can be measured by nano
indentation. The coatings whose relative error between the predicted 
hardness and the experimental hardness is less than 15% are considered 
to be added to the original data for the next iteration. In the third iter
ation, coating with a hardness of 40.1 GPa was found. The predicted and 
experimental values of the coating during each iteration are listed in 
Table 2, and the hardness ranges from 37.9 GPa to 40.1 GPa. The pre
dicted hardness is lower than the measured value, and the average 
prediction error is 11.5%, which indicates that the ML model of 
composition and process parameters is used to adequately predict the 
performance of the new coating. It is worth noting that in these three 
iterations, the predicted values are usually lower than the experimental 
values, indicating that the generalization ability of the model is limited 
due to the lack of high-quality data [44]. 

The hardness of the coatings with the best performance was 
compared with the coatings in the data set, as shown in Fig. 8. The red 
five-pointed star is the measured hardness of the coating prepared in this 
work. The pentagon represents the sample with the highest hardness of 
each system in the data set, and the system is marked in the figure. This 
value is 9% higher than the maximum hardness (36.9 GPa) of the qui
nary system in the original data [45], and only 1 GPa lower than the 
maximum hardness value of the six-component system, which can be 
considered as the measurement error [46]. 

The phase and microstructure of the three coatings were studied. In 
Fig. 9(a) XRD results show that the three coatings form high-entropy 
ceramics with a single FCC solid solution phase structure. Fig. 9(b) 
show the SEM morphology of the three coatings. The coating exhibits a 
very smooth surface without any obvious features. From the cross- 
sectional morphology of the coating, it can be observed that two 
different layers are separated by the boundary. The underlayer shows an 
amorphous structure, whereas the upper layer had a nano grain struc
ture. In the present study, the formation of the amorphous phase is 
caused by the tremendous compressive stress during deposition and the 
serious lattice distortion of multiple principal components. With the 
continuous deposition, the structures of Cr, Nb, Ta, and Ti binary ni
trides are FCC structure, which can be attributed to the high mixing 
entropy effect. This structure has also been reported in other papers [47, 
48]. Good surface and cross-section morphology is also one of the rea
sons for the high hardness of the coating. 

4. Conclusions 

In this study, a method combining machine learning and high- 
throughput experiments is proposed to predict and prepare a new 
super-hard high-entropy ceramic coating system, which is the hardest 
quinary system reported so far. The data were collected on the compo
sition and process parameters of 22 high-entropy nitride coating sys
tems. Based on the RF algorithm and SHAP, the relationship between 
hardness and input characteristics is analyzed. The key factors affecting 
the hardness of the coating are Bia, Al, Cr, and N. After comparing 
several common ML algorithms, an RF algorithm was selected, and 
active learning was introduced to further reduce the prediction error. 
Through three iterations, a new high-entropy nitride coating (AlCrNb
TaTi)N was found. Its hardness was 40.1 GPa, 9% higher than the qui
nary system in the original data set and only 1 GPa lower than the six- 
component system. Finally, the phase identification and microstruc
ture characterization of the coating were carried out, and it was found 
that the coating formed a single FCC structure. These results show that 
the ML-based method has great potential in manufacturing super-hard 
high-entropy ceramic coatings. The design strategy can be used to 
optimize the corrosion resistance and wear resistance of the coatings. 
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